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Abstract The accurate and quantitative analysis of the cache behavior in a Chip
Multi-Core (CMP) machine has long been a challenging work. So far there has been
no practical way to predict the cache allocation, i.e., allocated cache size, of a running
program. Lots of applications, especially those that have many interactions with the
users, cache allocation should be estimated with high accuracy since its variation
is closely related to the stability of system performance which is important to the
efficient operation of servers and has a great influence on user experience. For these
interests, this paper proposes an accurate prediction model for the allocation of the
last level cache (LLC) of the co-runners. With a precise cache allocation predicted, we
further implemented a performance-stability-oriented co-runner scheduling algorithm
which aims tomaximize the number of co-runners running in performance-stable state
and minimize the performance variation of the unstable ones. We demonstrate that
the proposed prediction algorithm exhibits a high accuracy with an average error of
5.7 %; and the co-runner scheduling algorithm can find the optimal solution under the
specified target with a time complexity of O(n).
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1 Introduction

With the CMP servers getting popular, programs are now running simultaneously on
different cores sharing the LLC. The sharing of LLC can lead to a high performance
variation which has negative effects on many aspects. For program that sharing LLC
with co-runners having large performance variations, its cache allocationwill fluctuate
and the contention of memory bandwidth is exacerbated which further degrades the
overall performance.Weemphasize that in considerationof the growing core frequency
and cache size, program performance has a steady improvement while its variation is
not. In fact, a varying service latency hurts the user experience and thus debase the
user evaluation of the programs especially for the web applications which have direct
interactions with end users, i.e., latency variation sensitive. During the scheduling of
applications, a stable average service latency is preferable than an average latency
with large variation even though it has higher average IPC.

Figure 1 shows a four-application scheduling problem with two online machine
learning applications and two web server applications. The average IPC of the whole
system (i.e., all four applications) and the average service latency variance of both
web applications under two schedulers are shown in the figure. For performance-
oriented scheduling algorithm, to reach highest IPC, each machine learning thread
is co-run with a web server application to keep CPU as busy as possible. On the
other hand, the other schedule mapping has an average IPC drop at 8.94 % but the
service latency variance of web server applications decreased 62 % in average which
is a significant improvement of user experience. Obviously for some user experience
critical situations the tradeoff between overall performance and stability is reasonable
and attractive. Therefore, finding a solution to achieve a stable performance(i.e., lower
latency variance) is desired for servers running this kind of applications.

As we try to lower the performance variations under an LLC-sharing context, it
is important to find a co-runner schedule mapping which yields small performance

Fig. 1 The average performance and its service variation of a four-application schedule problem under
different Schedules
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variation, i.e., the co-runners being assigned under this schedule mapping suffer less
performance variation than other mappings. To achieve this goal, an intensive research
on the precise prediction of the cache allocation is required. Since for most programs,
the contention of LLC allocation can drastically increase the data access latency and
incur a rising performance variation which is hard to be predicted [1–3]. Generally
speaking, the performance variation relies heavily on the cache allocation, i.e., a larger
cache allocation means a higher hit ratio, and thus leads to a lower average data access
latency and vice versa and thus a varying cache allocation is likely to increase the varia-
tion of the data access latencywhich alsomeans the performance variation. Exceptions
exist due their tiny cache footprints which fit in the L2 cache. However, such appli-
cations are rarely seen in popular web applications and thus we would not take them
into consider in this paper. Although precise prediction/evaluation of cache allocation
is highly needed for its great help to the performance analysis, we found few atten-
tions were paid to the estimation/prediction of the cache allocation. Literatures [4–6]
focused on the estimation of the total extra cache misses as a summative analysis of
the performance. Some researchers [7] proposed phase-detecting-based model for the
performance variation analysis. They employed a reuse distance-based cache inter-
ference estimation method which is in great complexity to profile and compute [8].
Other works [9–11] investigated cache partitioning from the aspects of both hardware
and software. They aim to guarantee the worst performance by adopting fair cache
sharing, where cache is inefficiently utilized and modification of hardware is required.
From our point of view, the lack of achievements on the estimation/prediction method
for cache allocation and model of performance variation put us at an inferior posi-
tion to mitigate/ease the performance variation. As we stated above, the co-runner
scheduling algorithm plays an important role in lowering the performance variation.
However, most researches of scheduling policies [12–17] focused on the optimization
of the overall performance or better energy efficiency without taking the performance
stability into consideration. Based on the close relationship between cache allocation
and performance stability, we are motivated to design a cache allocation prediction
method which is of great help in the modeling of performance variation and the design
of a performance-stability-oriented co-runner scheduling algorithm. The proposed co-
runner scheduling algorithm can effectively improve the performance stability of the
co-runners. The main contributions of this work are listed as follows:

– We propose a novel cache allocation prediction model with high parallelismwhich
is convenient to be accelerated by GPU to predict the cache allocation of each
co-runner. With a proper sampling interval, our prediction algorithm incurs low
overhead when applied in runtime and meanwhile maintains sufficient details of
the cache allocation variation which is valuable in the analysis of performance
variation and the design of the co-runner scheduling algorithm.

– We deduce a performance-stability-oriented co-runner scheduling algorithm by
leveraging the cache allocation information obtained under our cache prediction
algorithm and mapping the co-runner scheduling target to a matching problem.
The algorithm can solve the problem with a time complexity of O(n).

The rest of this paper is organized as follows: in Sect. 2, we provide literature review
as well as the motivation of our work. Section 3 is contributed to the description of our
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eviction probability-based cache allocation prediction model and its parallelization.
Section 4 proposes an performance-stability-oriented co-runner scheduling algorithm
by utilizing the cache allocation information and several other important observations.
We present evaluation results and explain the relationship between stability and perfor-
mance based on our algorithms and observations in Sect. 5. Finally we give concluding
remarks in Sect. 6.

We present evaluation results in and explain the relationship between stability and
performance based on our algorithms and observations in . Finally we give concluding
remarks in Sect. 7.

2 Related work and motivation

This paper investigates the problem of cache allocation prediction and the design
of a performance-stability-oriented co-runner scheduling algorithm. Both of the
issues have received relative few studies, for the former one, most of the previous
works focused on the minimization of the overall performance degradation; and the
researches of the co-runner scheduling policy were mostly aiming at the optimization
of the overall performance/energy. We give a brief introduction of previous works as
follows:

2.1 LLC allocation prediction

Previous researches on LLC allocation prediction are rarely seen. Most related works
focused on the evaluation of the locality and use the locality metrics to estimate the
cache inferences or total extra cache misses. Some works [5,6] established extra cache
misses estimation models which take the summation of all possible combinations of
memory access sequences. In [18], the authors simplified the evaluation of the locality
by introducing a probability model and use this model to predict the cache infer-
ences. The prediction of the cache allocation in runtime cannot benefit from such
methods for they did not provide a clear algorithm to calculate the LLC allocation
and the total extra cache misses is only calculated as a summative evaluation. Xu
et al. [7] established a cache allocation estimation model by taking reuse distance
as a probability factor. However, the method is very complicated in the profiling
procedure and cannot be used as an online method to predict the cache allocation.
Most importantly, an unrealistic assumption that they made for their methods was
that the memory access are evenly performed on the cache sets while we found them
highly imbalanced. As we stated above, the LLC allocation is the key to the analy-
sis of performance variation. Due the lack of sound and practical methods for the
prediction of LLC allocation, we are motivated to establish a practical yet accurate
prediction method for the LLC allocation with a solid theoretical foundation. Since
there are thousands of cache sets in an LLC and the memory access to them are not
uniform, we design our cache allocation prediction method based on simple metrics
which are easy to profile at runtime. Through this design, our algorithm can effi-
ciently utilize the high parallelism of GPU. By specifying every cache set a prediction
thread, we gather the cache allocations of each cache set and then further analyze the
information.
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2.2 Co-runner scheduling policy

Contemporary co-runner scheduling policy is load-balance oriented, which can pos-
sibly generate a co-runner mapping with poor performance. To address this problem,
previous literatures have done a lot of work on the reduction of the overall performance
degradation. Jiang et al. [13] mapped the co-runner selection target into a matching
problem of an all-connected graph, and showed that the optimal solution is a schedule
mapping with minimal summation of edge weights, which is an NP-hard problem.
Based on the reuse distance, Xiang et al [19] use cache footprint and lifetime to mea-
sure the cache locality and use these information to direct the scheduling in hoping
to achieve high overall performance. Cache interference reduction was also studied
in [20] by pairing light and heavy tasks together. However, a theoretical analysis was
absent and it is insufficient to deduce an accurate model by simply using cache miss
rate. Among all these works, CRUISE[17] is a representative overall-performance-
oriented algorithm that employs different policy to maximize the overall performance
depending on the LLC replacement policy. They schedule the LLC thrashing pro-
grams together (for LRU) which could improve the overall performance. However,
such policy will further exacerbating the LLC thrashing and the contention of memory
bandwidth for those LLC thrashing programs. For example, scheduling the streaming
applications together is very likely to incur increasing frame data delay with unpre-
dictable high variation due to the bandwidth contention and the sharp change of LLC
allocation while the other co-scheduled applications may run smoothly and the over-
all performance of the system looks good. Some other works are mainly fairness and
worst case performance optimization focused. Among this type of scheduling policy,
some researchers [9–11] present QoS analysis from the aspect of cache partitioning
which aims to guarantee the performance of worst case at the cost of cache wasting.
The main idea of fairness-oriented policy is compensation, i.e., allocate more cache
space or prolong the CPU slice to the applications which shows poor performance
[21,22]. Although this kind of scheduling policy may decrease the performance vari-
ation to some extent compared to the overall-performance-oriented policy, it is likely
to incur resource waste and large overall performance degradation. As can be seen,
previous works seldom pay attention to the optimization of the performance stability
which, from our point of view, should be considered with more importance especially
for the CMP severs running latency variation sensitive applications. In concern of
the insufficient study that performance stability has received, we are thus interested
in implementing a co-runner scheduling algorithm to guarantee a good performance
stability (i.e., low variation). One may think that a performance-stability-oriented
co-runner scheduling algorithm seems to tradeoff between performance and stability
and thus its overall performance is poor. However, our evaluation shows that the aver-
age overall performance drop of our performance-stability-first mapping from the best
overall performancemapping is within 7.8% andwith an average 17.5% performance
variation decrease. Additionally, a section is contributed to the discussion of the rela-
tionship between total performance and stability. With all the considerations above,
our algorithm is designed to decrease the performance variation of the co-runners
and obtain the optimal solution, i.e., a co-runner mapping, with a time complexity of
O(n).
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3 Prediction of the LLC allocation

The cache allocation of each co-runner is an important factor to the analysis of cache
contention fromwhich the performance variation can be further modeled. An accurate
prediction of cache allocation is of great help in directing the designment of a co-
runner scheduling algorithm no matter it is overall-performance or overall-stability
oriented. One possible method for the prediction of the cache allocation is by applying
an Allocation-MissRatio curve [23], which is the sample of the (cache allocation,
miss ratio) pair. Once the curve is obtained, the cache allocation can be obtained by
referring to the curve. However, the main difficulty in the adoption of this method
is that a specified cache allocation has to be allocated for a program which is very
difficult to implement on a real machine. Thus the miss rate-cache allocation curve
is only a rough reflection of the relationship between miss rate and cache allocation
which is not accurate enough to be referred to. We try to solve the problem from
a different perspective: the eviction probability (abbreviated as EP hereinafter), i.e.,
a co-runner’s probability of being chosen as the victim of next eviction. If we can
construct a metric which is positively correlated with EP with high accuracy, we
can use it to approximate the EP and formulate a Markov Chain model for cache
allocation prediction. The model can be clearly established by leveraging this metric
(we call it EP although it can never be the exact eviction probability) and miss rate
information obtained from Performance Monitor Counter (PMC). In the following,
we first introduce an important metric, called allocation mean, with which EP can be
derived.

3.1 Allocation mean

Assume there are two threads, denoted as i and j , contending for cache allocation.
Without loss of generality, we assume that the hit rate of thread i is higher than that
of thread j . Consequently, the data of thread i are very likely to be reaccessed before
eviction and then relocated to the head of the LRU queue. However, for thread j , due
to the low hit rate, few cache data will be reaccessed before eviction and most of its
cache data will shift toward the tail of the LRU queue. In this scenario, we can deduce
that in an LRU queue, once the contending threads are fully warmed up, the thread
with a relatively high hit rate (thread i) will occupy the positions which are close to the
head while the data of the thread with a relatively low hit rate (thread j) are squeezed
toward the tail. As the gap between the hit rate of the two threads becomes larger, the
separation of the data of these two threads in the LRU queue becomes more distinct.

If any consecutive cache eviction occurs, most of the data to be evicted belong
to thread j . However, as the allocation of thread j decreases, the tail region of the
LRU queue is partially filled up with the data of thread i and EPi increases. A stable
state of the cache allocation can be eventually reached if the miss rate does not have
a large variation. Intuitively, we want to find a metric to measure the extent of such
separation which is an indication of the EP for the competitors. Despite of reflecting
the relative position of each thread’s data in the LRU queue with high accuracy, this
metric should be easy to calculate since we will run it on GPU with high parallelism,
i.e., unconditional add calculations are preferred. Finding such a metric will be our
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first step to accurately predict the cache allocation. We use Allocation Mean (AM) as
the metric to measure the extent of data separation. Figure 2 is an illustration of AM,
defined as

AMi = 1

n

ni∑

k=1

pos(dk), (1)

where AMi is the allocation mean of thread i, ni is the number of cache lines occupied
by thread i, dk is the kth cache line of thread i and pos is a function that returns the
position of cache line i . As can be seen from Eq. (1), AM is the mean of the position
indices of cache lines which belong to the same thread in the LRU queue. We illustrate
the relationship between cache allocation and the allocation mean in Fig. 3 which we
export from our LLC simulator(a memcached server co-running with an httpd server).
It shows the cache allocation and the corresponding allocation mean of two threads
sharing the LLC. Apparently there exist two clusters, one has a relative small cache
allocation and a larger allocation mean while the other on the contrary. The reason
for this clustering phenomena is just as we described above, i.e., a small value of AM
indicates that the data are likely to be located close to the head of the queue while a
large value of AM means that most of the data is located near the tail.

Fig. 2 The allocation mean

Start

AMi = (1 3 4 9)/4

AM j = (2 5 6 7 8 10 11 12)/8

Fig. 3 The scatter plot of cache allocation–allocation mean point
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3.2 Profiling allocation mean online

Toacquire AM of each thread,we implement an instruction sampler based onPIN tools
which can capture the memory access address. The sampling procedure is activated
when sharpmiss rate changes aremonitored. The reason for not choosing phase change
[24] as the trigger is that AM is only affected by the miss rate but in many cases miss
rate changes while the phase not, especially in LLC-sharing context due to the effect of
co-runners. The sampling procedure is suspended once 10,000 consecutive memory
instructions are sampled. According to our experiment, the average IPC decrease
caused by the sampling is 18.2 % and typically exits within 1 s. We estimate this
sampling procedure fast and easy to proceed and is acceptable when applied online.
Furthermore, an AM quick reference algorithm can be used to record and restore the
AM when the periodicity of the miss rate is identified which can further decrease the
sampling requirement. Such case is not rare when the co-runners have stable incoming
workload. The memory access sequence is kept in memory read-only and then set as
the input of a GPU-based LLC simulator written with CUDA tool kit. In our case,
there are totally 8192 instances of device functions running in parallel with no need
for synchronization and each is responsible for the memory access that fall into its
corresponding cache set. Figure 4 is a normalized histogramofAMof anHttpd process
sharing LLC with a Proftpd process. By performing a K–S test, we cannot reject the
hypothesis that the AMobeys a normal distribution. Since there are thousands of cache
sets, a statistical metric is the best way to depict the behavior of the cache contention.
Therefore, we use the expectation of the distribution as the indicator of the Allocation
Mean.

3.3 Estimation of the eviction probability

Although AM can roughly indicate the position of thread’s data in LRU queue, EP
cannot be fully reflected by simply using AM . See Fig. 5 for illustration. In the figure
there are two threads sharing the cache set. Thread i has a larger cache allocation and

Fig. 4 AM histogram of an apache server
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Fig. 5 AM and allocation size AMi 6.3

AM j 7.5

has an AM value of 6.3 while thread j only holds 2 cache lines and has an AM value
of 7.5. We may draw the conclusion that thread j is more likely to lost allocation
if considering AM only. However, the conclusion does not hold due to the fact that,
although thread i has a smaller value of AM , it has a much larger allocation which
increases the EP (the larger the portion a thread occupies, the larger the probability
that the data appear close to the tail of the LRU queue). For this concern, we take both
AM and current data allocation into consideration when estimating the EP. Denoting
Ci as the cache line count allocated for thread i and CACHEWAYS as the cache ways
of the LLC, we have

ALi = Ci

CACHEWAYS
(2)

Next, we denote by AMi the expectation of thread i’s Allocation Mean and EPi as the
relative eviction probability of thread i . We have the following equation

EPi = AMi

max(AM)
ALi

/ n∑

k=1

AMk

max(AM)
ALk (3)

Since this definition take both the position and allocation information into account, it
can reflect the relative probability of being chosen as the eviction victim.

3.4 Predicting the cache allocation

3.4.1 GPU-accelerated LLC simulator

For the purpose of online application, EP should be profiled quickly which means tak-
ing the advantage of the high parallelism ofGPU is necessary. UsingGPU to accelerate
the LLC simulation has been seen in [25], the simulator is parallelized in cache set
level and the search is also parallelized. However, in our implementation we do not
need the bucket sort procedure (which incurs 36%overhead).We do not parallelize the
LRU search process neither for we found no prominent performance improvement by
adopting the parallel search (due to the large synchronization overhead their algorithm
needed).
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3.4.2 Predicting the cache allocation

Once we obtain the EP of each thread, the contention of the cache allocation can be
modeled. Assume threads i and j sharing the LLC. Denote MissRatei (t) as the LLC
miss rate of thread i and �i as the cache allocation variation of thread i . We have

�i (t) = MissRatei (t − 1) × EP j (t − 1) − MissRate j (t − 1) × EPi (t − 1) (4)

Equation (4) implies that the cache allocation of thread i will change under two
conditions: (a) Thread i encounters a cache miss and the victim cache line belongs
to thread j . In this case the cache allocation of thread i will increase. (b) Thread j
encounters a cache miss and the cache line belongs to thread i is chosen as the eviction
victim. In this case, the cache allocation of thread i will decrease. We use libpfm to
calculate MissRatei (t) by reading out the cache miss related event of thread i from
PMC.

To comply with the LRU algorithm, �i (t) needs to be rounded up into either 1 or
-1 in each step of prediction. The round up function can be simply defined as

D(�i (t)) =

⎧
⎪⎨

⎪⎩

0

− 1 �i (t) < 0

1 �i (t) > 0

(5)

Thus, the cache line count for next period Ci (t) can be expressed by

Ci (t + 1) = Ci (t) + D(�i (t)) (6)

Assume that the two co-runners are fully warmed up and AMs are profiled, we present
the pseudo-code of this algorithm in Algorithm 1. Be noted that this algorithm is
responsible for single cache set; therefore, there are 8192 instances of this algorithm
running in parallel on GPU in our case.
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The prediction procedure can be depicted as follows. First, we obtain the initial
value of AM, AL and calculate EP for each thread. Then in each time period, for
each thread, we calculate the cache allocation change according to Eq. (4). Once the
changes are calculated, the cache allocation of each thread in the next time period
can be predicted. Next, EP will be updated due to the change of cache allocation. To
further reduce the overhead, the EPs are saved for the fast approximation in the next
run. Updatingmiss rate every loop only introduces periodic randomness if themiss rate
variation is white noise like and thus it is set as constant. This prediction procedure is
activated when the AM is re-profiled as discussed above (i.e., a considerable miss rate
change happens). During the interval, the results will be deemed as the cache allocation
for this time period. According to our test, 200,000 memory instructions are sufficient
to warm up the total 8192 cache sets of an 8 MB LLC. This amount of data can be
processed within 0.7 seconds by our GPU-accelerated prediction algorithms, which
we consider is acceptable during practical usage. Denote by to as the total overhead of
our algorithm, ttr as the overhead of trace collecting, tker as the overhead of the kernel
function running on GPU. For memory trace within billions of records, tker will not
exceed 6 seconds. However, ttr may vary depending on the memory allocation and
the OS scheduling which has a direct influence on the memory access rate and the
contention of memory bandwidth.

We now demonstrate the accuracy of our algorithm from both single cache level
set and the whole LLC level by showing the prediction curve.

Figure 6a presents the prediction curve of cache set 0 (for proftpd sharing LLC
with httpd) generated from Algorithm 1 when the co-runners are fully warmed up.
It can be seen from the figure that the prediction curve can well approximate the
simulated value. Note that the minimal change for a 12-way cache sets is 8.3 % (one
cache line), thus we say that a steady state is reached as long as a periodic oscillation
is within 8.3 %. We can see that when encountering sharp miss rate variation, there
exist several cycles delay for the predicted value. The delay is relative small, after

A

B

C D

Fig. 6 Allocation prediction curve for a single cache set
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all, if EP can truthfully reflect the relative eviction probability, the convergence will
not take long time because the cache line count (typically 12) is small. In another
aspect, we found that the predicted value is biased from the simulated one even in
stable state,(i.e., the simulated value is not the mean of the oscillation in the flat
part). Figure 6b shows the prediction curve of the entire LLC, i.e., totally 8192 cache
sets, the two curves are the averaged values of the counterpart in (a). It takes more
iterations to converge than the single cache set case for the steady state can only be
reached when a large portion of the cache sets are fully visited. In some part, the bias
exists (from × ticks 2000 after), the reason could be the non-normal distributed bias
in the single cache prediction. The source of such bias is the inaccuracy of the miss
rate. For in our algorithm, the miss rate is used as the same through all cache sets
which in fact brings in the error. If the cache miss happens extreme unevenly (e.g.,
most cache miss happened on few cache sets), then in this time period, the predicted
cache allocation is biased and this motivated us to represent the prediction result in
the form of distribution instead of the average of summation, which can demonstrate
the evaluation more clearly. Figure 6c, d shows the cache allocation histogram of
totally 8 K cache sets at time t from the simulator and the predictor, respectively.
The expectation curve is presented in the evaluation section. We verify that the two
cache allocation distributions obey a positively skewed normal distribution and their
expectations are very close. In Fig. 6d, the distribution of the cache allocation exhibits
a smaller variation, which is caused using the averaged MissRate for every prediction
instance (and thus the summation is not the samewhich result in the bias). Fromanother
point of view, this weakens the distinction between cache sets and thus make the value
more concentrated to the expectation. In other words, our prediction algorithm is apt
to predict the cache allocation for most cache sets instead of the total averaged. Now
with an accurate prediction of the cache allocation for the majority of cache sets, we
can foresee and estimate the performance variation. To present our prediction method
more clearly, Fig. 7 shows the overview of our prediction method with every critical
data path and function unit. Next we introduce a co-runner scheduling algorithm by
applying our new metric, i.e., EP. With its performance-stability-oriented scheduling
policy, the performance variation of the systemwill decreasewhen facing the changing
environment, e.g., sharp miss rate variation caused by increasing workload, phase
change, etc. We limit the number of threads that sharing the LLC at two which is
sufficient to clarify our principle, the algorithm can be greatly complicated when the
sharing number is over two, which we would like to leave it as our future work.

4 A performance-stability-oriented co-runner scheduling algorithm

As aforementioned, the performance is positively correlated with cache allocation in
most cases. Hence, to design a performance-stability-oriented co-runner scheduling
policy is equivalent to implement an algorithm under which the cache allocations of
the co-runners suffer small variations. After careful consideration, our algorithm is
designed to find an optimal mapping which can guarantee a maximum number of co-
runners with good performance stability and a minimum total performance variation
for those which are not. By formulating a proper target function and a simple yet solid
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Fig. 7 Overview of the cache allocation prediction method

matching logic, our algorithm can find the optimal solution with a time complexity of
O(n) .

4.1 The co-runner scheduling policy

Intuitively, one may speculate it reasonable to schedule programs with relative close
EPs to sharing the LLC. We prove the rationality of this speculation through the
following formulas. Denote ALx

i (t) as the cache allocation of thread i under co-
runner mapping x at time t and σ x

i as the standard deviation of ALx
i (t). If σ x

i < σ
y
i ,

we say that ALi is more stable under mapping x than y, i.e., we prefer mapping x
to y. Assume in time t , the changes of miss rate are �MissRatei and �MissRate j .
According to Eq. (4), the difference of the cache allocation is:

�i (t + 1) = �MissRatei × EP j (t) − �MissRate j × EPi (t) (7)

Note that from the definition of EP, we know that EP j (t) + EPi (t) = 1. Assume
�i (t + 1) > 0. When EP j (t) increases with a, we have the following inference

�MissRatei × (EP j (t) + a) − �MissRate j × (EPi (t) − a)

> �i (t + 1)
(8)
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Similar inference can be drawn that when �i (t + 1) ≤ 0,EP j (t) decreases. On the
contrary, when �i (t + 1) < 0 and EP j (t) increases, |�i (t + 1)| will be decreased.
From our observation, generally the curves of �MissRatei (t) and �MissRate j (t)
are twisted and varying which means all the two situations, i.e., �i (t + 1) > 0 and
�i (t + 1) ≤ 0 happens alternately and thus the variation of �i (t) will be enlarged.
With the following definition

δEP( j, i) = ∣∣EP j (t) − EPi (t)
∣∣ (9)

we can draw the conclusion that under the same miss rate change, a larger δEP( j, i) is
more likely to incur a larger cache allocation variation and the variation itself will also
yield a large variance, that is, �i and δEP( j, i) are positively correlated. Therefore, to
achieve performance stability, it is wise to schedule the threads with small δEP( j, i),
i.e., close EPs together.

4.2 The EP queue

To compare the EP of arbitrary two co-runners easily, we pick up a pivotal program
and then all other programs are co-scheduled with this pivotal program to profile the
EP. Given co-runner set Sc, we use the following steps as the first part of our scheduling
algorithm, as shown in Algorithm 2. The results are sorted in ascending order as QEP.
A heuristic obtained from the previous sections is that we need to pick out the co-
running pairs by selecting the adjacent co-runners in QEP with the smallest δEP( j, i).
We now construct a weighted complete graph by taking advantage of QEP, which is
of great help in solving the problem.

4.3 The EP graph

We map the elements in QEP into a weighted all-connected graph denoted as GEP by
labeling the vertices (i.e., the co-runners) with their position in QEP. For example, if
co-runner a is the 4th element in QEP, then in GEP, its corresponding vertex is labeled
4. The edge weight of GEP is defined as
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ωi, j =

⎧
⎪⎨

⎪⎩

ω j,i

δEP(i, j) i, j �= n

0 j = n

(10)

We set an empirical threshold Tps below which the two co-runners are said to be
sufficiently close to eachother and thus yield a small performancevariation. In contrast,
the co-running pairswhose δEP( j, i) exceeds the threshold are considered to suffer high
performance variation. For this reason, we call a co-runner pair whose δEP( j, i) ≤ Tps

is a stable pair, otherwise it is an unstable pair. Next we classify the edges into two
categories, i.e., the Red Edge and the Black Edge. The edge is colored red only if its
weight is no larger than Tps . Otherwise it is colored black. The subgraph composed
of red edges is called a Red Graph denoted as GR . Similarly we denote by GB the
subgraph called Black Graph, of which the edges are all black.

Instead of targeting for the minimization of the total performance variation. The
algorithm should try to find a co-runner mapping which can maximize the number of
co-runner pairs with small performance variation and minimize the total performance
variation of the unstable pairs. This target holds more practical meaning than finding
a total minimum performance variation for the reason that there may exist a co-runner
mapping with a minimal

∑n
i=1 �i , yet most of the performance variation decrease

is caused by a single program while other programs may exhibit little performance
variation decrease. Furthermore, it will be more appealing to the operation of network
program server for that a maximum number of performance-stable co-runner pairs can
be beneficial to more services.

Now our target is transformed to a matching problem, i.e., select n/2 edges with no
any twoedges sharing the samevertex, the optimal solution is the one that containsmost
red edges and meanwhile yields the minimum summation of weights of black edges.
We introduce our algorithm by taking a 10-vertex case, i.e., schedule 10 programs for
co-running, as an example. Figure 8 represents the EP distance matrix (i.e., the weight
matrix of GEP) deduced from QEP and set Tps as 0.1. GEP is shown in Fig. 9, where
the black edges are not drawn for the clarity of vision.

4.4 Pairing the vertexes

First we introduce Lemma 1 and Lemma 2 provides two important attributes to the
EP Graph, which are the keys of our algorithm.

Lemma 1 In EPGraph GEP, for three arbitrary vertices i, j and k that satisfy k−i >

j − i , we have ωi,k > ωi, j

Proof Since QEP is an ordered queue, according to Eq. (10), we can deduce that
ωi,k > ωi, j if k is a larger index than j in QEP. ��
Lemma 2 Let H be the ordered set of the vertexes in a Red Graph. Then H is a set
of consecutive integers.
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Fig. 8 EP distance matrix

1
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3

4

5

6

7

9

8

10

Fig. 9 The EP graph

Proof We prove by contradiction. Assume there exist hi and hi+1 in set H , and they
satisfy hi − hi+1 > 1. Let hi − h j = 1. Then h j /∈ H . According to the definition of
GR and GB , we have δEP(h j , hi ) > Tps and δEP(hi , hi+1) < Tps . This contradicts
with Lemma 1. Therefore, H is a set of consecutive integers. ��
In GR , there could exist several connected subgraphs. According to the definition, the
vertices in the subgraphs can be paired sequentially without generating an unstable
one. For GB , we implement a linear scanning method to guarantee that the summation
of the edge weight is the minimal by leveraging Lemma 1. Algorithm 3 presents the
corresponding pseudo-code.
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As can be seen inAlgorithm3, in the first loop,GCG containing vertex 1 is identified.
Denote it as G1, since G1 has only one vertex 1, it will be pushed into the unmatched
vertex set Vunmatched. Then in the second loop, GCG that contains vertices 2, 3, 4, 5 is
identified. Since the number of vertices is even, according to the algorithm, the vertices
will be sequentially paired. Then 6 is identified as a GCG in loop 3, and pushed into
Vunmatched. In the 4th loop, 7, 8, 9 are the vertices contained in GCG, where vertex 9
has the largest index according to the QEP order and is pushed into Vunmatched while
7, 8 is scheduled to run together. In the last loop, vertex 10 is the only element in GCG

and pushed into Vunmatched. Note that GCG is removed from GEP at the end of each
loop. Now Vunmatched contains 1, 6, 9, 10, and will be sequentially paired. The final
schedule mapping of this case is {〈1, 6〉, 〈2, 3〉ps , 〈4, 5〉ps, 〈7, 8〉ps, 〈9, 10〉}, which
contains three performance stable pairs (subscripted with ps) and two performance
unstable pairs. We call this algorithm Sequential Connected Sub-Graph Identifying
and Pairing. Using Lemmas 1 and 2, we can prove that our algorithm can achieve a
total minimal summation of black edges as well as the maximum number of stable
pairs. Another advantage of this algorithm is that it has a time complexity of O(n).
As we can see from the pseudo code, there is only one loop which iterates all vertices,
meaning that the algorithm can accomplish within exactly one scan of the vertices.
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4.5 Scale-up of the algorithm

With the advent of quad-core and octa-core CMPs in recent years, a co-runner schedul-
ing algorithm should be capable of scheduling four or eight programs to share the LLC
and yield small performance variation. However, the problem cannot be described
properly under the 2-D EP graph and is proved to be an NP-hard problem. The cost
for achieving an optimal solution is expensive and thus we can use a recursive way
to solve this problem, that is, using EP Graph-based algorithm to do the first round
mapping. Then using the weighted average EP to represent the co-runner pairs, i.e., the
two co-runners aremerged as one. Then the EPGraph is regenerated and our algorithm
applied again. For quad-core cases it will take two rounds and three for octa-core. This
is obviously a sub-optimal solution yet still the easiest and most practical one. We skip
further details for the page limitation.

5 Experimental evaluation

In this section, we present the evaluation of the proposed LLC allocation prediction
model and the performance-stability-oriented co-runner scheduling algorithm. Our
testbed is a server with two Xeon X5770 Octa-Core CPU on board. Xeon X5770 has
two LLC-sharing domains with each one composed of four dual-thread cores. There
are eight cores sharing an 8MB LLC in each domain. Each program is accommodated
with four cores. See Fig. 10. Thus, each domain will have two programs sharing the
LLC and the eight applications running on the server simultaneously. We choose eight
applications along with their profiled EP as shown in Table 1. These applications
are mainly typical IO-bounded web applications except several computation bounded
ones. The reason for choosing both kinds of applications is that we want the EP gap
to be enlarged which can demonstrate the effect of our algorithm better (as you can
see the web applications do not show large EP gap essentially). Note that, Lucy is
selected as the pivotal program in the profiling of the EP. In our experiment, we use
standard test client if it is provided, otherwise the client is implemented by us. The

RAM

CPU 0

Socket 1

8MB LLC

0  8 2  10 4  12 6  14

L1

L2

L1

L2 L2

L1 L1

L2

Socket 2

8MB LLC

1  9 3  11 5  13 7  15

L1

L2

L1

L2 L2

L1 L1

L2

CPU1

Fig. 10 Memory hierarchy of testbed
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Table 1 EP distances
Application Test client Index EP

Httpd server http_load 1 0.77

Proftpd server Proftpd client 2 0.70

Postfix Author implemented 3 0.69

Subversion Subversion client 4 0.65

Memcached memslap 5 0.61

Lucy Author implemented 6 0.5

MLPack knn-search example 7 0.33

XgBoost LR demo 8 0.29

service requests frequencies are in the form of periodic step functions with different
period and are controlled by expect script.

5.1 Evaluating cache allocation prediction

We evaluate our algorithm by comparing the expectation of cache allocation from the
predictor and the simulator. As is explained in Sect. 3, we gather all the 8192 predicted
cache allocation values for the entire LLC and obtain the expectation by fitting them
with normal distribution. The curve of the expectation is what we presented. We
first skip a 200,000 warm-up memory instructions, and then dump over 120,000,000
memory instructions with their corresponding cache line number time stamp for every
co-runner as the initial profiling.

We pair every two programs to share the LLC. Figure 11 shows the prediction and
simulation curves of the cache allocation expectations. Four co-runner pairs are shown,
i.e., 〈MLPack,Memcached〉, 〈MLPack,Httpd〉, 〈Xgboost,MLPack〉 and 〈Memcached,
Httpd〉. We skip the presentation of other cases due to page limitations. It can be seen
that there is a drastic variation of the amount of instructions that our algorithm needs
to take to achieve a stable prediction value under different co-runner mappings. In
addition, the shapes of the prediction curves are quite different under the four co-
runner pairs. Specifically, the one obtained under 〈MLPack, Memcached〉 pair looks
more like a step function while the one under 〈MLPack, Httpd〉 pair remains almost
as a straight line. The differences above are highly correlated with the memory access
pattern (e.g., the reuse distance, etc.) of the programs.

Figure 12 presents the average accuracy under both low (suffixed with L) and heavy
workload (suffixed with H) for three co-runner pairs. We found that under heavy
workload, our predictor has a performance of smaller average errors and variation
comparing to the lowworkload case.A reasonable explanation is that a heavyworkload
may lead to a higher memory reference rate, which can make our memory reference
trace more tight which can lead to a more accurate simulation of the LLC; on the
contrary, an idled application is likely to increase the randomness of the simulation.
It also implies that our algorithm works more favorably under a heavy workload
condition.
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Fig. 11 Expectation curve of cache allocation

Fig. 12 The effect of workload variation

The average prediction error of all the 28 co-runner pairs (for each pair we present
the prediction error for one of the two programs) are shown in Fig. 13. The average
prediction error is around 5.2 % while the largest error is 11.3 %.

5.2 Evaluating performance-stability-oriented scheduler

To evaluate the effectiveness of our stability-oriented co-runner scheduling algorithm,
we estimate the performance variation by the coefficient of variation which is widely
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Fig. 13 The result of cache allocation prediction

used in time series analysis. Specifically,wedenote byCVj,i the coefficient of variation
of program j’s IPC under scheduling mapping i . Then we have

CVj,i = σ j,i

μ j,i
(11)

where σ j,i is the standard deviation, μ j,i represents the mean value. Let Si be the
stability score, defined in Eq. (12), as the variation metrics of scheduling mapping i .

Si =
N∑

j=1

α jCVj,i (12)

α j is theweight of each application and
∑N

j=1 α j = 1. Consequently, a bettermapping
is expected to yield a relative small S. We emphasize that the optimal solution in our
algorithmdoes not necessarily have the smallest S , for there could be one pairwith very
low CV while others remain high. Recall the design of our algorithm is to maintain as
many as possible co-runner pairs yielding a low CV (performance-stable state) when
the miss rate changes. Figure 14 shows the CV under different workload for several
co-runner mappings with four programs, which is sufficient to show the difference.

MLPack [26](kNN-Search) is a computation-bounded program and thus it is insen-
sitive to theworkloadvariation relative to other co-runners.Wecan see that under heavy
workload, the CV of all co-runners increase in all mappings. The main reason that the
co-runners have wider miss rate ranges under heavy workload is due to the severer
bandwidth contention than that under lowworkload case, and thus the variation ofmiss
rate increases, which, according to our theory, will increase the performance variation.
From the slope of the lines, it can be seen that the CV increase rates of mapping 2 and
3 are larger than 1. Co-runner mapping 1 also has the smallest S increase rate. These
two facts comply with the conclusion that we draw in our scheduling model, i.e., a
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Fig. 14 Standard deviation of service latency

Fig. 15 Evaluation of EP distance and the corresponding S

smaller δEP(k, i) of scheduling mapping may reduce the performance variation under
varying environment.

There are totally 315 co-runner mappings for our case, see Table 1, due to the
limitation of resources, we run 105 of them (including the optimal mapping generated
by our algorithm) for 10 times. The scatter plot of Si is also shown in Fig. 15. The
X-axis represents the quadratic sum of the EP distance while the Y-axis is the S value.
The reason for not choosing the sum of EP as X-axis is that lots of mappings have close
sum of EP distance but relative large CV due to the existence of one co-runner pair
with large EP distance. The quadratic sum of EP distances can reflect such difference
and can scale up the X-axis for the purpose of a clear presentation.

We can see that the mappings with lower quadratic EP distance sum is located at
the lower part of the figure and vice versa. The positive correlation between S and
quadratic sum of EP distance can be easily identified from the figure(although the
points are not so dense). With the growing of x axis, the max value of S increases
significantly while the min value increases slowly. As is shown, the optimal solution
does not yield the smallest S nor the smallest quadratic sum, however it has the most
co-runner pairs running at a relative performance stable state and smallest EP distances
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Table 2 Stability score

Mapping Score IPC Mapping Score IPC

〈2,3 | 4,5〉 〈1,6 | 7,8〉 0.312 0.392 〈1,2 | 3,4〉 〈5,6 | 7,8〉 0.341 0.377

〈1,5 | 2,6〉 〈3,7 | 4,8〉 0.781 0.421 〈2,3 | 4,5〉 〈6,7 | 1,8〉 0.577 0.407

〈1,6 | 4,5〉 〈2,3 | 7,8〉 0.291 0.349 〈5,6 | 3,4〉 〈1,2 | 7,8〉 0.389 0.401

〈3,7 | 2,6〉 〈1,5 | 4,8〉 0.797 0.442 〈6,7 | 4,5〉 〈2,3 | 1,8〉 0.502 0.409

〈1,8 | 2,7〉 〈3,6 | 4,5〉 0.591 0.401 〈1,4 | 2,3〉 〈5,8 | 6,7〉 0.679 0.414

〈3,6 | 2,7〉 〈1,8 | 4,5〉 0.603 0.399 〈5,8 | 2,3〉 〈1,4 | 6,7〉 0.712 0.428

for those are not stable.With the modification of the EP threshold, the optimal solution
can be different.

Especially, the S of some mappings which we are interested in are listed in Table 2.
The last two rows are the same mappings with the first two rows, only their co-runner
pairs running on different CPUs (every<>means aCPU). The programs are presented
by their index in Table 1.

Our algorithm chooses 〈Proftpd, Postfix〉s, 〈Subversion, Memcached〉s, 〈MLPack,
Xgboost〉s, 〈Httpd, Lucy〉 as the optimal solutionwhenwe set the EP threshold as 0.05.
It does not have the smallest S but has the most co-runner pairs running at a relative
stable state and the unstable pairs with the smallest CV comparing to other mappings.
One notable observation is that the memory bus sharing does affect the CV, the first
element in the third row shows slight improvement of stability than its counterpart
at the first row. The following may explain this observation: the relative small CV of
IPC could lead to a lower bus transfer variation, i.e., the need for bandwidth is relative
stable during the same period. Assume there are four co-runner pairs, and two with
low S, the other two with high S, our hypothesis suggests locating the co-runner pairs
with low and high S on the same CPU (sharing the memory bus). For this can avoid
the worst case of memory bus contention between the co-runner pairs with high S.
Such relief of memory bandwidth contention feedback to the IPC variation decreases
the CV. This improvement needs more theoretical deduction and equation to represent
and we would like to leave it as our future work.

5.3 Evaluation of the overall performance

As we stated above, the trade-off between the overall performance and stability has
to be acceptable. We compared the overall performance between stability-oriented
algorithm, fairness-aware and overall-performance-oriented algorithms, respectively.
We use average IPC, i.e., T = ∑

IPCi/N as the metric of overall performance.
We compare the performance between these three algorithms. According to the
performance-oriented algorithms [14] described in Sect. 2, we profiled every combina-
tion of two programs and the optimal co-runner mapping generated by their algorithm
is 〈Proftpd, Postfix〉, 〈Subversion, Memcached〉, 〈MLPack, Xgboost〉, 〈Httpd, Lucy〉.
Then we applied fairness-aware methods, e.g., CPU slice prolonging on this mapping,
the result shows that the S dropped with 6.7%with T also dropped with 11.5%.While
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Fig. 16 Performance comparison between three schedulers

the schedule mapping generated by our algorithms has an S and T decreased 9.4 and
5.9 %, respectively. The result shows that the overall performance of our algorithm
is 5.6 % higher while with nearly 3 % performance variation drop comparing to the
fairness methods.

Tobemore statistically persuasive,we further divide the eight applications into four-
application combinations to increase the evaluation samples. We randomly selected
18 application combinations (among total C(8, 4)/2 ones). The results are shown in
Fig. 16. The x-axis is the index of the combinations in ascending order of average
IPC under performance-oriented scheduler and y-axis is the average IPC. We found
that under low IPC (i.e., all four applications are computation bounded) situations, the
average IPC of performance-oriented and stability-oriented mappings are close. With
the average IPC getting higher, the performance-oriented scheduler always choose the
mappingwith highest IPCwhich enlarges the performance gap. It is rational to consider
the stability orientation as an approximation of the performance-oriented scheduler
when most of to-be-scheduled applications are computation bounded. The difference
becoming more apparent when both none-computation-bounded and computation-
bounded applications are to be scheduled. We can see that, comparing to the best per-
formance, the stability-oriented mapping has an average 15.8 % drop of average IPC.

On theother hand, the fairness-aware algorithmneeds to cooperatewith andynamic-
strategy scheduler instead of employing an overall-performance-oriented scheduler (as
previous works do) to maximize its benefit. The control of fairness must be dynamic
with very quick response to avoid the resource waste, any mismatch (e.g., cache
allocation, CPU slice) is likely to incur a rising performance variation and performance
drop.

6 Conclusions

In this paper, we introduce a practical method for the prediction of cache allocation
which takes the advantage of our novel metrics Allocation Mean and its derivation
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Eviction Probability which reflect the relative probability of eviction. Due to the sim-
plicity in the computation and high parallelism the prediction method is easy to apply.
We further propose a performance-stability-oriented co-runner scheduling algorithm
which targets to maximize the number of performance-stable co-runner pairs and
minimize the total performance variations of the unstable ones. The algorithm uses
EP as a key metric to map the selection of co-runners into a matching problem of a
weighted all-connected graph. By leveraging the concept of EP distance and a proper
optimization target, our algorithm can find the optimal solution with a time complex-
ity of O(n). Most importantly, the positive relation between EP distance and the CV
of IPC can be identified from the evaluation which proved the effectiveness of our
stability-oriented algorithm. The overall performance comparison between our algo-
rithm and typical overall performance-oriented and fairness-oriented ones indicates
that it is reasonable to say that our stability-oriented co-runner mapping has a overall
performance between overall-performance-oriented and fairness-oriented schedulers
meanwhile yielding the lowest IPC (i.e., throughput) variation.
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